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An alternative method for power spectral density (PSD) estimation—the Daniell method—is revisited
and compared to the most prevalent method used in the field of atomic force microscopy for quanti-
fying cantilever thermal motion—the Bartlett method. Both methods are shown to underestimate the
Q factor of a simple harmonic oscillator (SHO) by a predictable, and therefore correctable, amount
in the absence of spurious deterministic noise sources. However, the Bartlett method is much more
prone to spectral leakage which can obscure the thermal spectrum in the presence of deterministic
noise. By the significant reduction in spectral leakage, the Daniell method leads to a more accurate
representation of the true PSD and enables clear identification and rejection of deterministic noise
peaks. This benefit is especially valuable for the development of automated PSD fitting algorithms for
robust and accurate estimation of SHO parameters from a thermal spectrum. C 2016 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4943292]

I. INTRODUCTION

Measuring the stiffness of cantilevers in the context of
atomic force microscopy (AFM) has been a topic of pri-
mary importance in the field since its inception.1–7 Many
detection methods have been developed for accurately sens-
ing cantilever deflections down to picometer precision.8–13

However, the ultimate limit for accurately converting these
deflections into nanoscale forces has been limited by diffi-
culties in calibrating the cantilever stiffness. Furthermore, a
variety of dynamic AFM imaging techniques,14,15 where the
cantilever is driven on resonance, rely on accurate calibration
of the stiffness of the cantilever’s first eigenmode. Also, a
host of new multi-frequency nanomechanical mapping tech-
niques16–19 depend on accurate calibration of the stiffness of
higher eigenmodes.20,21

Whereas a measure of cantilever stiffness is necessary
for quantifying conservative tip-sample interactions, changes
in damping of the cantilever relate to energy loss mecha-
nisms. Dissipation measurements22–27 provide complemen-
tary information about sample properties and atomic pro-
cesses at the tip-sample junction. Such studies are of interest
in environments ranging from vacuum, to air, water, and
highly viscous fluids, all of which rely on accurate calibra-
tion of the cantilever damping before interaction with the
sample.

Regardless of the measurement technique, any inaccuracy
in calibrating the sensor—the cantilever—translates directly
into a systematic error in interpreting the tip-sample conser-
vative and dissipative interactions. Consequently, alongside
these new technique developments, there have been studies
dedicated to improving the estimation quality of cantilever
stiffness and damping before tip-sample interaction occurs.
The information about these parameters is contained in the
power spectral density (PSD) of the cantilever’s thermally
driven stochastic motion.28–36 Recent efforts have proved valu-
able in quantifying and correcting estimation biases37–39 and

predicting the variance40,41 in measurements of cantilever
parameters from measured PSDs.

This paper focuses on the methodology used for estimat-
ing a PSD. An alternative method to the norm is presented
and its performance is benchmarked on a typical AFM canti-
lever measurement with respect to determining its stiffness
and damping. Although the simple harmonic oscillator (SHO)
model is used as a point of discussion through most of this
paper, the PSD estimation method presented here is especially
useful for accurately estimating thermal spectrum of non-
SHO stochastic oscillators in the presence of non-ideal noise
sources, such as 1/f fluctuations and deterministic periodic
noise.

Section II demonstrates the performance of two PSD esti-
mation methods that will be discussed throughout the technical
sections that follow. The comparison motivates the importance
in choosing the appropriate PSD method for accurately quan-
tifying cantilever thermal motion.

II. MOTIVATION: REVISITING PSD
ESTIMATION METHODS

Since the dawn of information theory, many methods
for the estimation of power spectral densities have been pro-
posed. One of the first proposed approaches for estimat-
ing PSDs, anticipated by Einstein in 194142 and then pro-
posed by Daniell in 1946,43,44 amounts to performing a single
PSD operation on a time series and then smoothing it to
get a more precise estimate of the true PSD. Due to the
limited computing resources throughout the 20th century, the
popularity of this “Daniell method” for spectral estimation
was short-lived and quickly superseded by other methods
that remained prevalent until today. The simplest of these
is the Bartlett method,45 where the time series is split up
into segments that are transformed into PSDs and then
averaged together. Inevitably, splitting up a time series is
accompanied by information loss and spectral distortion.
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FIG. 1. A time series of cantilever deflection was acquired for 5 s with the LDV on a triangular silicon nitride cantilever (TR400-S, Olympus) with Q= 52±1.
The PSD was computed using the (a) Bartlett method and the (b) Daniell method. Both methods with α = 6.0. The peaks were fit with an SHO model and
resulted in underestimated Q= 47±1 and Q= 51±1, respectively. Spectral leakage of the Bartlett method distorted the electronic noise peak around 22.7 kHz
and broadened the SHO peak as can be seen from the inaccurate fit to the data. Note that the “fit PSD” data were plotted without the white noise component
to illustrate deviations from the “true PSD.” Movies of the time evolution of PSD averaging that simulate a live data stream are presented for both methods
(enhanced online) (M = 849, fs = 5 MHz, N = 24 999 654). (Multimedia view) [URL: http://dx.doi.org/10.1063/1.4943292.1] [URL: http://dx.doi.org/10.1063/
1.4943292.2]

Despite these side effects, the Bartlett method remains a
commonly used method for PSD estimation largely due to its
simplicity.

Given the recent rise in computational power of desktop
computers, it is worth revisiting the Daniell method. As a
benchmark experiment, the power spectral density was
computed from a times series of cantilever thermal motion.
These thermal fluctuations were measured with a laser Doppler
vibrometer (LDV) introduced into a Cypher AFM (Asylum
Research) through a blueDrive™ optical system that was
retrofit with broadband optics as in Ref. 46. Figure 1 (Multime-
dia view) compares the resulting PSDs computed using both
the Daniell and the Bartlett methods. Due to the significant
reduction in spectral leakage in this particular case, the Daniell
method resulted in a more accurate estimate of the shape of
the cantilever response: the error in Q factor determination
dropped from 8% with the Bartlett method to 2% with the
Daniell method. Also, the noise peak around 22.7 kHz can
be correctly interpreted for the Daniell method as a deter-
ministic periodic noise rather than some stochastic noise. The
distinction between a deterministic and stochastic noise is
elaborated upon in Appendix A; briefly, cyclical electronic
noise is deterministic, while cantilever thermal motion is
stochastic for typical AFM experiments.

In this article, the Daniell method is revisited and com-
pared to the Bartlett method in terms of robustness, speed,
accuracy, and precision in estimating PSDs in the context of
studying the thermal spectrum of AFM cantilevers.

III. METHODOLOGY

The Bartlett and Daniell procedures for calculating PSD
estimates are described in this section. The goal of both
methods is to reduce the PSD variance by a factor of M ,
referred to as the “averaging factor.”

Both methods start with a time series x[n] acquired with
a sampling frequency f s. To facilitate the comparison of the
Bartlett and Daniell methods in this context and to avoid
certain mathematical idiosyncrasies, the time series x[n] is
truncated to impose the total number of samples N to
be an even integer multiple of an odd averaging factor M .
This ensures that M is odd, N is even, and N/M is an integer.

A. Bartlett method

For the Bartlett method, the time series is divided into M
equal segments. The power spectral density P[ f ] is computed
as the squared magnitude of the Fourier transform for each
segment, and all the results are averaged. Due to segmentation
of the time series into M parts, the frequency resolution f∆
= M/T , where T is the duration of the time series.

The Bartlett method is graphically illustrated in Fig-
ure 2(a) and mathematically defined by

PBartlett [ f ] = 2M
f∆N2

M−1
m=0

��������

N
M −1
n=0

x

n + m

N
M


· e−2πi nM

N
f
f∆

��������

2

,

(1)

where i is the imaginary unit and f is the discrete frequency,
defined as integer multiples of f∆ up to f∆(N/M/2 − 1).

The DC offset ( f = 0 Hz) and the Nyquist frequency
( f = f∆N/M/2) are both omitted in this particular
implementation.

B. Daniell method

For the Daniell method, the squared magnitude of the
Fourier transform of the entire time series is computed. Next,
adjacent data points in the frequency domain are averaged
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FIG. 2. The Bartlett and Daniell methods are illustrated graphically on simulated data to explain how a time series is converted into a power spectrum. The
number of samples (N = 264) was chosen particularly low for illustrative purposes only. The Bartlett method divides a time series into segments, performs a
PSD operation on each segment, and averages (AVG) the segments together to obtain a smooth PSD (M = 11 in this example). The Daniell method performs a
single PSD on the whole time series, then averages adjacent frequency bins to obtain a smooth PSD (also M = 11). The underlying light blue curve represents
the “true” PSD of the model used to simulate the data.

together in groups of M . Due to this averaging in the frequency
domain, once again the frequency resolution f∆ = M/T .

Although the parameter M serves a different purpose in
this context, the resulting frequency resolution f∆ is identical
in the Bartlett method. This explains why the same parameter
M applies analogously to both methods and can be thought of
as the “averaging factor” in either cases.

The Daniell method is graphically illustrated in Fig-
ure 2(b) and mathematically defined by

PDaniell[ f ]

=
2

f∆N2

M−1
m=0

������

N−1
n=0

x [n] · e−2πi n
N

(
f

f∆/M
+m−M−1

2

)������
2

. (2)

As illustrated in Figure 2(b), the first and last (M + 1)/2
data points from the original PSD are discarded in this partic-
ular implementation. This is of no concern as the first few
data points of a measured PSD are highly prone to drift,
spectral leakage, and typically carry limited, if not misleading,
information about the stochastic process being studied; the last

few data points are highly prone to aliasing. In that sense, the
rejection of these data points is considered good riddance and
is analogous to discarding the DC and Nyquist frequencies in
the Bartlett method.

IV. ACCURACY AND BIAS

The accuracy of any PSD estimate suffers because the time
window of the measurement is inevitably finite. This sets a
lower bound on the frequency resolution of the estimated PSD
to 1/T . Importantly, additional spectral distortions can degrade
the effective frequency resolution of the PSD even further, as
discussed in this section.

A. Spectral distortion due to spectral leakage

The Fourier transform operation used to compute the PSD
assumes that the finite time measurement is perfectly periodic
with period T ; that is, the last data point is considered contig-
uous to the first data point, leading to an infinite circular dataset.
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The consequence is that any discontinuity between the last and
first data points is assumed to be real measured information and
affects the PSD estimate accordingly. For example, a perfectly
sinusoidal noise that is truncated by a finite time window
will appear discontinuous and result in spectral leakage (an
exception to this occurs when exactly an integer number of
cycles fits into the time window). Such spectral leakage led to
the broadening of the 22.7 kHz peak in Figure 1(a).

A more subtle, yet important, consequence of spectral
leakage is that any SHO peak in the estimated PSD will be
broader than its true PSD counterpart. In Figure 1, spectral
leakage broadened the shape of the thermal spectrum in the
case of the Bartlett method. In order to correct for this broad-
ening after the fact, Sader et al. have derived an expression for
the effective quality factor Qeffmeasured from a true Q subject
to spectral leakage,39

Qeff = Q
(
1 − 1

2α

)
, (3)

where

α =
π

2Q
f0

f∆
. (4)

The normalized α parameter measures the number of data
points that make up the peak of a SHO. As an example, the
very peak of the SHO in Figure 1 is defined by roughly 6 points
and α ≈ 6. Eq. (3) is correct in the asymptotic limit α ≫ 1.
Importantly, Eq. (3) requires the use of a rectangular window
function, discussed later.

On the other hand, the spectral leakage in the Daniell
method follows a different scaling law. Because spectral
leakage occurs when the Fourier transform operation is per-
formed, the Daniell method is subject to spectral leakage that
is proportional to 1/T , rather than the M/T observed in the
Bartlett method. This factor of M facilitates attaining negli-
gible levels of spectral leakage for a given application when us-
ing the Daniell method. For a given experiment, there will usu-
ally be some value of M that guarantees that the majority of the
spectral leakage spans at most two frequency bins. (Regardless
of the averaging factor M , a noise peak can always span up two
frequency bins if it falls near the intersection of both bins.)

B. Spectral distortion due to frequency-averaging

The Daniell method is afflicted by a different form of
spectral distortion caused by the fact that adjacent frequency
bins are combined into a single bin during averaging. This
distortion is represented graphically in Figure 3 on a noiseless
theoretical SHO PSD. It can be understood from visual inspec-
tion that averaging a PSD section with negative curvature
leads to an underestimation of the PSD value at the average
frequency value. Conversely, a positive curvature leads to an
overestimated PSD data point.

The functional form of the frequency-averaged SHO PSD
is derived analytically in Appendix B. The consequence of
frequency-averaging in the Daniell method is an underesti-
mated Q factor of the SHO model that is fit to the data due to
broadening of its peak. The effective Q factor can be approxi-
mated by

FIG. 3. The effect of binning data points in the frequency domain is illus-
trated here. The averaged data points may underestimate or overestimate the
true PSD depending on the local curvature of the PSD.

Qeff = Q
(
1 − π2

12α2

)
, (5)

in the asymptotic limit α ≫ 1.
Importantly, the bias in the Q factor in the case of fre-

quency-averaging scales asα−2, which converges to the correct
Q factor more quickly than the α−1 scaling caused by spectral
leakage in the Bartlett method, seen in Eq. (3).

The bias in Q factor estimation of Eq. (5) can be inverted
in order to recover the true Q in an experimental setting after
measuring a biased Qeff, as in

Q = Qeff *
,
1 +

π2

12α2 +

(
π2

12α2

)2
+
-
, (6)

where it was assumed that Qeff ≈ Q, and the binomial approx-
imation was carried out to second order. This inversion of
Eq. (5) is accurate to within 0.1% for α > 3.

V. PRECISION AND VARIANCE

The precision in the estimation of SHO parameters relates
to the variance of the PSD data points. Both the Bartlett and
Daniell methods perform linear averaging of data points that
results in a calculable variance. The variance of each data point
in the final PSD is equal to

V ar{P[ f ]} = P[ f ]
M

. (7)

This equation applies to stochastic noise and a rectangular
window function. Other window functions, discussed later,
may increase the variance of estimated PSD parameters due
to loss of information.

Previously established analytical methodologies,37,38,40 or
stochastic simulations,41,47 can be applied for studying how the
variance of P[ f ] relates to the variance of the SHO parameters.

VI. OPTIMIZATION

Much like the Bartlett method, the Daniell method can
be optimized by choosing an averaging factor M that is most
appropriate for the particular application, as well as tailoring
the windowing function to minimize the effects of spectral
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FIG. 4. The effects of spectral leakage are demonstrated on a PSD of a sinusoidally driven cantilever (TR800-L, Olympus) with an amplitude of 1 nm for the
(a) Bartlett and (b) Daniell methods with rectangular and Hann window functions. The true cantilever thermal spectrum was acquired independently and also
plotted for reference. The noise peak at 22.70 kHz originates from the LDV electronics (M = 71, fs = 5 MHz, N = 49 999 904).

leakage. PSD averaging during live data acquisition requires
additional considerations that are also discussed in this section.

A. Averaging factor M

The optimal averaging factor M for the Daniell method
depends on the application. In the context of fitting an accurate
SHO model, the threshold averaging number MSHO can be
defined by the desired level of accuracy in Q factor determi-
nation by

MSHO <
√

3ϵ
T f0

Q
, (8)

where ϵ is the upper bound in relative Q estimation error,
defined as ϵ = 1 −Qeff/Q.

However, there is a trade-off between minimizing the
averaging factor for accuracy in the SHO parameters and the
identification and isolation of deterministic noise peaks. In the
presence of large amplitude deterministic noise peaks, larger
values of M may be required to contain the spectral leakage
to at most two frequency bins. As described in Sec. VI B, the
required M to achieve this condition also strongly depends on
the windowing function.

B. Windowing function

The Daniell method does not guarantee the prevention of
spectral leakage, and it only scales the Fourier transform of
the window function by a factor of 1/M (along the frequency
axis) with respect to the Bartlett method. Depending on the
amplitude of the deterministic noise peak relative to the sto-
chastic background, a certain minimum value of M will be
required to limit the bulk of spectral leakage into no more than
two frequency bins.

Just as with the Bartlett method, the shape of spectral
leakage can be tuned by the use of window functions. This
directly impacts the choice of M required for limiting spectral
leakage in any particular application. This idea is demonstrated

by example in Figure 4: the PSD of a sinusoidally driven canti-
lever was computed using the Bartlett and Daniel methods.

For a rectangular window function, the sinusoidal drive
of the cantilever is shown to spectrally leak substantially for
the Bartlett method, to the point of completely obscuring the
underlying thermal spectrum. Recalculating the PSD with a
Hann window function greatly reduces the spectral leakage.

Despite the large reduction in spectral leakage by the
Daniell method, the rectangular window function still leads to
a broadening of the sinusoidal drive peak. However, the use of
a Hann window manages to contain the spectral leakage into
a single frequency bin, making it easily distinguishable from
the underlying thermal spectrum.

It is clear from Figure 4 that the use of window functions
benefits both methods greatly. However, the Q factor correc-
tion for the Bartlett method (by inverting Eq. (3)) only applies
to a rectangular window function,39 which is very restrictive.
Meanwhile, Q correction for the Daniell method (Eq. (6))
is not dependent on the window function because spectral
leakage is negligible; only spectral distortion due to frequency-
averaging requires correction.

The data in Figure 4 should be taken with a grain of
salt. The usage of the Bartlett method does not always lead
to spectral leakage: if the data series is timed precisely to
contain an integer number of cycles of a deterministic noise
source, then no spectral leakage occurs. In that sense, the data
presented in Figure 4 represent only a possible outcome of an
experiment. However, it is a fact that any window function
for the Daniell method is exactly M times narrower (in the
frequency domain) than its Bartlett counterpart and it sets the
upper bound for spectral leakage in a PSD.

C. Live implementation

So far, the discussion has been based around calculating
the PSD of a pre-recorded time series of duration T , and
determining the optimal averaging factor M . The details of the
discussion differ when considering a live stream of data.
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When presenting live PSD averaging, the M factor would
typically not be defined a priori. In that case, a frequency
resolution f∆ is defined before the acquisition by f∆ = 1/T∗,
where T∗ is the predetermined duration of each measured time
segment. As more data segments are acquired with time, the
averaging factor M increases. This rationale can be applied
to both the Bartlett and Daniell methods, as presented by the
movies in Figure 1 (Multimedia view). This will be referred to
as the “preferred implementation” for live PSD averaging for
both methods.

The advantage of the Daniell method is that both the
variance and spectral leakage scale as M−1 for this preferred
implementation. Therefore, spectral leakage can be made
negligible by acquiring more data, as demonstrated in Figure 1.
Meanwhile, the Bartlett spectral leakage remains fixed as more
data are acquired; only the variance scales as M−1. In other
words, additional data do not result in a clearer distinction
between deterministic and stochastic noise sources for the
Bartlett method.

The disadvantage of the Daniell method is that it requires
the entire time series acquisition to be continuous, such that
hardware memory limits the maximum duration T . Also, per-
forming a PSD calculation on an increasingly longer time
series requires ever more computing power. Meanwhile, the
Bartlett method allows interruptions between the M time seg-
ments, and the repeated PSD operation acts on time series of a
predetermined duration T∗. Therefore, Bartlett averaging can
go on forever if past time segments are being discarded.

For these reasons, the Bartlett method may be more prac-
tical for live PSD averaging in certain experimental settings.
Nevertheless, as long as the entire time series is acquired
continuously, it can be post-processed by the Daniell method
to reap the benefits of reduced spectral leakage.

VII. RELATING EXPERIMENTAL
TO PHYSICAL PARAMETERS

Although the physical parameters of interest for character-
izing an AFM cantilever are its stiffness k and damping b, the
parameters that are used in fitting the thermal spectrum are its
resonance frequency f0, quality factor Q, for practical reasons.
In fact, the calibration method developed by Sader et al.48–50

and implemented by Asylum Research as GetReal™ relies
solely on a measurement of f0 and Q to estimate the cantilever
stiffness k relative to a set of reference cantilevers previously
calibrated by interferometry. The advantage of this approach is
that f0 and Q can be measured on any AFM and do not require
interferometry, yet they can be used to calculate the stiffness
of the cantilever by Sader’s semi-empirical theory.48

In this context, the errors in the experimental parameters
(Q, f0) can be related to the physical parameters of interest
(k,b) by the following scaling laws:48,49

k ∝ Q f 1.3
0 (9)

and

b ∝ f 0.3
0 . (10)

Whereas f0 can be measured quickly and accurately in
ambient conditions, the Q factor is much more susceptible to

bias and noise. This explains the emphasis that has been placed
on estimation of Q so far.

VIII. BENCHMARK

First, the Bartlett and Daniell methods will be compared
with regards to their performance in determining the true Q
factor of a thermally driven cantilever. Then, an automated
fitting algorithm that rejects deterministic noise peaks will be
tested using both methods.

A. Q factor bias

A stochastic simulation based on methodology described
previously41,47 was used for comparing both methods. The
cantilever from Figure 1 was used as a test case. A 5-s long
time series of cantilever motion was simulated and PSDs were
calculated for a wide range of averaging values M . Non-
weighted least-squares fitting was used to fit an SHO model
to the measured PSD data to obtain a Q factor estimate. This
process was repeated 15 000 times to obtain very precise esti-
mates of the average Q factor as a function of M . The results
are presented in Figure 5.

As predicted, the accuracy of the Q factor estimation suf-
fers for large M , and correspondingly low α, for both methods.
The theory derived in Section IV is overlaid onto the data in
Figure 5 and shows very good agreement. In other words, both
the Bartlett and Daniell analytical predictions (Eqs. (3) and (5))
of Q factor estimation bias are very accurate down to α as low
as 5. This level of predictability implies that the bias can be
corrected after fitting the PSD, and the true Q factor of the
cantilever can be recovered after spectral distortion occurs.
Although the theory in Section IV was derived under the
assumption that α ≫ 1 and Q ≫ 1, these conditions are easily
fulfilled in ambient environments by nearly all commercial
AFM cantilevers.

The variance of each SHO fit parameter was also measu-
red for the simulation in Figure 5. The results were the same
for both methods because they are based on linear averag-
ing of data points as described in Section V. It is the total

FIG. 5. The results from a stochastic simulation show deviations of the
measured Q factor from the true Q factor as the averaging factor M is
increased (or equivalently the alpha factor α is decreased, shown on the
secondary x-axis). Both biases are predictable by analytical theory, also
plotted. A rectangular window function was used.
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measurement time T that ultimately determines the variance of
SHO parameters. In this example, where T = 5 s, the normal-
ized standard deviations σQ = 2.5%, σ f0 = 0.02%, and σA0
= 2.5% for both methods.

The random errors σQ and σ f0 convert to errors in stiff-
ness σk = 2.5% and damping σb = 0.01% by the scaling laws
presented in Section VII. Clearly, this low damping error σb is
actually overshadowed by systematic calibration errors on the
order of 1% that would have affected the interferometric cali-
bration of the reference cantilevers. Nevertheless, the efforts in
correcting the Q factor bias to well below 1% by the equations
in Section IV are worthwhile for accurately estimating the
stiffness in this context.

B. Case study: Automated noise filter performance

An algorithm for automated removal of deterministic
noise peaks from a PSD is demonstrated in this section. The
goal is to clean the PSD in order to more accurately fit the
cantilever thermal spectrum. The algorithm is based on the
simple idea that large and abrupt changes in the PSD relate
to deterministic noise, while a thermal spectrum has a broad
shape that changes smoothly across the PSD.

First, the thermal fluctuations of a cantilever were
measured on a standard Cypher AFM, which is free of deter-
ministic noise in the vicinity of the cantilever’s resonance ( f0 =

23.3 kHz), to provide an accurate estimate of the Q factor.
Then, the thermal motion was measured with the previously
described LDV, and its PSD was computed with the Bartlett
and Daniell methods. Both PSD’s are corrupted by an elec-
tronic noise peak at 22.7 kHz, which was filtered by a noise
filtering algorithm, as presented in Figure 6.

The noise filtering algorithm used here specifically calcu-
lates differences between adjacent PSD data points and rejects
any data points that deviate from their neighbors by some
threshold value (tuned to prevent false positives). Then, each
noise-filtered PSD was fit with an SHO model, as shown in
Figure 6. The Q factor fit to the Daniell PSD is accurate within
random error of 1%, while the noise-filtered Bartlett PSD
underestimates the Q factor by 13% in this particular case. The
lowering of the fit Q factor is attributed to spectrally-leaked
noise that was unsuccessfully filtered by the algorithm. The
same algorithm was much more efficient at filtering the noise
peak in the Daniell PSD whose power was concentrated in a
single frequency bin.

Although it is possible to construct more sophisticated
algorithms for removing deterministic noise peaks, it is clear
by inspection of Figure 1 that removing such peaks is easier
for PSD’s estimated with the Daniell method. As shown in
Figure 4(a), removing a spectrally leaked noise peak may be
difficult when using the Bartlett method or even impossible if
the rectangular window function is used.

It is important to note that acquiring a longer time series
does not resolve the difficulty isolating a spectrally leaked
deterministic noise peak from a thermal spectrum for the
Bartlett method. The number of data points making up the
spectrally leaked sine wave is determined by the shape of
the window function (and number of cycles within the time
series), and not the duration of the time series.

FIG. 6. The thermal spectrum of the cantilever from Figure 4 was computed
with the Daniell and Bartlett methods. Then, a noise filtering algorithm was
applied to both PSD’s to remove the electronic noise peak at 22.7 kHz.
The true Q= 51.9±0.6 was measured independently. A fit to the Bartlett
PSD underestimated the true Q by 13% despite the removal of most of the
deterministic noise peaks. The Daniell PSD with noise removal resulted in the
correct Q factor within error (±1%) (M = 29, fs = 5 MHz, N = 4 999 948).

IX. DISCUSSION

Both the Bartlett and Daniell methods have similar esti-
mation variance and allow for accurate recovery of the Q factor
(after correction) in cases where a clean thermal spectrum
can be measured. However, the Bartlett method requires the
use of a rectangular windowing function in order to correct
for Q factor bias by solving Eq. (3). A rectangular window
function can cause significant spectral leakage of deterministic
noise peaks that may be difficult to isolate from the thermal
spectrum. Spectral leakage may take a theoretically sharp peak
and distort it into an SHO-like noise source in a measured PSD
by the Bartlett method. This may render the noise peak and the
SHO peak indistinguishable and prevent cantilever calibration,
as reported by Sader et al. during the calibration of certain
reference cantilevers whose resonance frequencies were close
to those of electronic noise peaks.48 Also, the presence of a
deterministic noise peak may invalidate the calibration of a
cantilever by an automated PSD fitting procedure applied by
AFM software in the field.

A notable benefit of the Daniell methodology is that spec-
tral leakage of deterministic noise peaks can be significantly
reduced, and limited to spanning at most two frequency bins
with the appropriate choice of averaging factor M and window
function. In this case, deterministic noise peaks can be clearly
identified and removed before fitting an SHO model to the
PSD, thereby allowing robust and accurate calibration of the
cantilever stiffness and damping. The removal of electronic
noise peaks is especially useful for very high Q cantilevers,51,52

such as in vacuum experiments, where the cantilever ther-
mal noise can easily be mistaken for electronic noise and
vice versa. Reducing the burden in distinguishing between
stochastic and deterministic noise sources paves the way for
accurate and robust automated PSD fitting software and AFM
automation algorithms.

Furthermore, the large reduction in spectral distortion of
the Daniell method carries important consequences for esti-
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mating PSDs that deviate from the SHO model. The frequency
dependence of damping,4,22,53,54 1/f multiplicative noise,11,55

and other deviations from ideal SHO behaviour4,56–59 require
PSD estimation methods that have reduced bias at their root, as
opposed to correcting for bias after-the-fact by assuming some
model for the measured spectrum. In those types of cases, the
fast reduction in bias by the α−2 scaling law of the Daniell
method (see Eq. (5)) has a clear advantage because it may be
impossible to correct for any biases if the true PSD functional
form is unknown.

Fundamentally, the benefits of the Daniell method can be
attributed to the fact that the PSD operation is performed on the
entire time series. This preserves all the information when the
PSD is being computed. On the other hand, the segmenting of
the time series into M pieces by the Bartlett method results in
information loss. Specifically, this may result in up to M times
wider spectral leakage.

Similarly to other PSD estimation methods, the Daniell
method can benefit from windowing to reduce the effects of
spectral leakage, especially in situations with large determin-
istic noise peaks. In particular, a rectangular window function is
not recommended for the Daniell method. A combination of the
proper window function and optimal M factor depends on the
dynamic range and nature of the signals being measured. For
typical AFM scenarios, the use of a Tukey window that tapers
only a small percentage of the time series may be optimal.
Tapering only the very edge of the Tukey window may be
sufficient to reduce spectral leakage to at most two frequency
bins in most cases, while avoiding an increase in variance of
SHO parameters due to information loss caused by windowing.

The disadvantages of the Daniell method are only tech-
nical in nature. The primary drawback is that it requires
the storage of the entire time series. In contrast, the Bartlett
method performs the Fourier transform on smaller time seg-
ments which can be discarded as the data are being acquired
and the PSD’s are being averaged. Another, yet less significant,
drawback of the Daniell method is the additional time required
to compute the Fourier transform of a single long time series
versus several shorter ones. For large sample numbers N , both
methods obey a scaling law of order O (N) = N log(N), but the
Daniell method requires between 2× and 6×more computation
time with respect to the Bartlett method.63 To put this into
perspective, the PSD calculations in Figure 1 took 0.7 s and
1.7 s for the Bartlett and Daniell methods, respectively.63

X. CONCLUSION

In conclusion, the Daniell method is an alternative PSD
estimation method to the well-established Bartlett method that
carries advantages in certain experimental settings, especially
when the presence of deterministic noise peaks corrupts the
measurement of a stochastic process. Although both methods
result in the same parameter variances, and both allow straight-
forward correction of the Q factor estimation bias, determin-
istic noise peaks are much more difficult to isolate with the
Bartlett method due to spectral leakage. This represents a
burden on automated fitting algorithms, which can be allevi-
ated by the use of the Daniell method.

Whereas both methods benefit from appropriate window-
ing of the time series, the Daniell method leads to M× less
spectral leakage because the segmentation of the time series
in M segments, which leads to information loss, is avoided.

Although the Bartlett method is less computationally
intensive and requires less memory, the Daniell method has
promising applications for experiments where spectral leakage
needs to be minimized to avoid distorting the measured PSD
of a stochastic process. Also, studies of stochastic oscillators
that do not obey well established models (such as the simple
harmonic oscillator model) can benefit from the significant
reduction in spectral distortion offered by the Daniell method.

The methodology presented here for accurately measur-
ing the thermal spectrum of simple harmonic oscillators in
AFM can analogously benefit other fields, such as optical
trapping,60–62 that rely on power spectral density estimation for
accurate instrument calibration.
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APPENDIX A: DETERMINISTIC VS
STOCHASTIC NOISE

The distinction between deterministic and stochastic noise
depends on the context and the time scale of the experiment.

For example, cantilever thermal noise may look purely
sinusoidal for durations of hundreds of milliseconds in
cryogenic environments where the Q factors reach several tens
of thousands. In this case, the PSD of the cantilever SHO may
fall into a single frequency bin and be considered determin-
istic: the cantilever position and velocity at the beginning of
the time series mostly determine the entire trajectory.

On the other hand, highly cyclical electronics noise may
look stochastic when observed across days, as the phase may
drift due to variations in temperature, for example.

Although somewhat arbitrary, a distinction between sto-
chastic and deterministic noise may be drawn by comparing
the coherence time of the noise source to the duration of the
experiment. In the context of this paper, the duration of the
experiment is the time series duration T , while the coherence
time of a SHO is defined as 2Q/ f0. According to this criterion,
the thermal noise of cantilevers is highly stochastic in ambient
conditions, while periodic electronic noise sources are typi-
cally highly deterministic.

APPENDIX B: QUANTIFYING Q BIAS
FOR DANIELL METHOD

A SHO with stiffness k, mass m, and damping b has a
transfer function with squared magnitude

|C |2 = 1
�
k − mω2

�2
+ [ωb]2

, (B1)

with units of m2/N2. The motion of this SHO is driven by
stochastic thermal driving force
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F (ω) = 4kBTb, (B2)

with units of N2/Hz, where kB is the Boltzmann constant, andT
is the temperature. The measureable PSD of this SHO is given
by the product

P (ω) = F (ω) × |C |2, (B3)

with resulting units of m2/Hz, where P(ω) is the continuous
PSD analog of the discrete PSD P[ f ] described earlier.

Using the definition of the resonance frequency ω0
=
√

k/m and Q = k/ω0b, the above PSD can be rewritten in a
more experimentally convenient form as

P (ω) = 4kBTω3
0

kQ
× 1
�
ω2

0 − ω2
�2
+

ω0ω
Q

2 . (B4)

At high Q values, this distribution approaches a Lorentzian
shape around the resonance, which warrants the following
approximation:

P (ω) = kBTω0

kQ
× 1

[ω0 − ω]2 +

ω0
2Q

2 . (B5)

Performing frequency-averaging by grouping adjacent fre-
quency bins is analytically equivalent to convolving P (ω)with
the uniform distribution

U (ω|ωR) =



1/ω∆ if |ω| < ω∆/2
0 if |ω| > ω∆/2

, (B6)

where ω∆ represents the frequency resolution of the final
frequency-averaged PSD. This convolution

(P ∗ U ) =
 ∞

−∞
P (Ω)U (ω −Ω) dΩ

=
1
ωR

 ω+
ω∆

2

ω−ω∆
2

P (Ω) dΩ (B7)

results in the Daniell PSD functional form

PDaniell (ω|ω∆) = 2kBT
kω∆

×

tan−1

(
2Q
ω0

(
ω +

ω∆
2
− ω0

))
− tan−1

(
2Q
ω0

(
ω − ω∆

2
− ω0

))
. (B8)

Evaluating the above expression at the resonance (ω = ω0)
simplifies to

PDaniell (ω0|ω∆) = 4kBT
kω∆

arctan
(

Qω∆
ω0

)
. (B9)

This can be expressed in terms of the normalized α parameter
by substituting

ω∆ =
π

2Q
ω0

α
, (B10)

and approximated by the Taylor expansion

arctan (x) = x − x3/3 + [. . .] (B11)

into

PDaniell (ω0|ω∆) = 4kBT
kω0

Q

1 − 1

12

(
π

α

)2

. (B12)

Therefore, the effective Q factor in the vicinity of the resonance
peak becomes

Qeff = Q

1 − 1

12

(
π

α

)2

, (B13)

as a good approximation for α ≫ 1.
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